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Decision-making in the presence of other competitive intelligent
agents is fundamental for social and economic behavior. Such
decisions require agents to behave strategically, where in addition
to learning about the rewards and punishments available in the
environment, they also need to anticipate and respond to actions
of others competing for the same rewards. However, whereas
we know much about strategic learning at both theoretical and
behavioral levels, we know relatively little about the underlying
neural mechanisms. Here, we show using a multi-strategy com-
petitive learning paradigm that strategic choices can be character-
ized by extending the reinforcement learning (RL) framework to
incorporate agents’ beliefs about the actions of their opponents.
Furthermore, using this characterization to generate putative in-
ternal values, we used model-based functional magnetic reso-
nance imaging to investigate neural computations underlying
strategic learning. We found that the distinct notions of prediction
errors derived from our computational model are processed in
a partially overlapping but distinct set of brain regions. Specifi-
cally, we found that the RL prediction error was correlated with
activity in the ventral striatum. In contrast, activity in the ventral
striatum, as well as the rostral anterior cingulate (rACC), was cor-
related with a previously uncharacterized belief-based prediction
error. Furthermore, activity in rACC reflected individual differences
in degree of engagement in belief learning. These results suggest
a model of strategic behavior where learning arises from interac-
tion of dissociable reinforcement and belief-based inputs.
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Decision-making in the presence of competitive intelligent
agents is fundamental for social and economic behavior (1,

2). Here, in addition to learning about rewards and punishments
available in the environment, agents also need to anticipate and
respond to actions of others competing for the same rewards.
This ability to behave strategically has been the subject of intense
study in theoretical biology and game theory (1, 2). However,
whereas we know much about strategic learning at both theo-
retical and behavioral levels, we know relatively little about the
underlying neural mechanisms. We studied neural computations
underlying learning in a stylized but well-characterized setting of
a population with many anonymously interacting agents and low
probability of reencounter. This setting provides a natural model
for situations such as commuters in traffic or bargaining in
bazaars (1). Importantly, in minimizing the role of reputation
and higher-order belief considerations, the population setting
using a random matching protocol is perhaps the most widely
studied experimental setting and has served as a basic building
block for a number of models in evolutionary biology and game
theory (1, 2).
Behaviorally, there is substantial evidence that strategic

learning can be parsimoniously characterized by using two
learning rules across a wide range of strategic contexts and ex-
perimental conditions: (i) reinforcement-based learning (RL)
through trial and error, and (ii) belief-based learning through
anticipating and responding to the actions of others (3, 4). The

goal of this study is to provide a model-based account of the
neural computations related to these two learning rules and their
respective contributions to behavior. First, RL models have been
central to understanding the neural systems underlying how re-
ward learning (5). In the temporal-difference (TD) form, RL
models posit that learning is driven by a prediction error defined
as the difference between expected and received rewards and
have been highly successful in connecting behavior to the un-
derlying neurobiology (5, 6). Moreover, recent experiments in
social and strategic domains have shown that RL models explain
a number of important features of the data at both behavioral
(3, 7) and neural levels (8, 9).
Despite their success, standard RL models provide an in-

complete account of strategic learning even in the simple pop-
ulation setting. Organisms blindly exhibiting RL behavior in
social and strategic settings are essentially ignoring that their
behavior can be exploited by others (3, 10). In contrast, belief-
based learning posits that players make use of knowledge of the
structure of the game to update value estimates of available
actions and comes in two computationally equivalent inter-
pretations. One interpretation assumes the existence of latent
beliefs and requires players to form and update first-order
beliefs regarding the likelihood of future actions of opponents.
Specifically, these models posit that players select actions stra-
tegically by best responding to their beliefs about future strat-
egies of opponents and update these beliefs by using some
weighted history of opponents’ choices (1, 3). Mathematically,
players engaging in belief learning correspond to Bayesian
learners who believe opponent’s play is drawn from a fixed but
unknown distribution and whose prior beliefs take the form of
a Dirichlet distribution (1). Under the alternative interpre-
tation, beliefs and mental models are not assumed and action
values are updated directly by reinforcing all actions pro-
portional to their foregone (or fictive) rewards (11). The
equivalence of these two mathematical interpretations thus
makes it clear that belief-based learning does not necessarily
imply the learning of mental, verbalizable beliefs commonly
referred to in the cognitive and social sciences, because specific
beliefs about likely strategies of opponents are sufficient but not
necessary for this type of learning.
In this study, we used a multi-strategy competitive game, the

so-called Patent Race (12), in conjunction with functional mag-
netic resonance imaging (fMRI). In the game, players of two
types, Strong and Weak, are randomly matched at the beginning
of each round and compete for a prize by choosing an investment
(in integer amounts) from their respective endowments. The
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player who invests more wins the prize, and the other loses. In
the event of a tie, both lose the prize. Regardless of the outcome,
players lose the amount that they invested. In the particular
payoff structure we use, the prize is worth 10 units, and the
Strong (Weak) player is endowed with 5 (4) units (Fig. 1).
To illustrate how players can anticipate and respond to the

actions of others in this game, suppose the Weak player observes
the Strong players frequently investing five units. He may sub-
sequently respond by playing zero to keep his initial endowment.
Upon observing this play, Strong players can exploit the Weak
player’s behavior by investing only one unit to obtain both the
prize while keeping four units from the endowment. This be-
havior may, in turn, entice the Weak player to move away from
investing zero to win the prize. In contrast, pure RL players will
respond to these changes in behavior of the opponents in a much
slower manner, because they behave by comparing received
payoffs from past investments without consideration for the
strategic behavior of others (SI Results and Fig. S1).
This paradigm has three key features that build on insights

from previous experimental and theoretical studies on learning
models that together help to computationally characterize be-
havior and, statistically, minimize collinearity in the model out-
puts (13, 14). First, by using a random matching protocol, we
minimize reputation concerns and, thus, the role of higher-order
belief considerations (1). This paradigm allowed us to focus on
first-order belief inferences, which are highly tractable and a key
reason for its popularity in theoretical and experimental studies.
Second, the large strategy space of the 6 × 5 game combined with
the presence of secure strategies (i.e., investing zero or five), due
to asymmetry in endowments between Strong and Weak players,
allowed us to separate the relative contributions of belief and
reinforcement inputs. The intuition is that secure strategies yield
the same received payoffs regardless of actions by the opponents,
giving us a control for the received payoff but still allowing the
beliefs about the actions of the other players to change. In
contrast, previous studies have typically used simple games that
are well-suited to an experimental setting but statistically sub-
optimal in separating the relative behavioral contribution of two
learning rules (13). Moreover, games with small strategy space
often result in high negative correlation between foregone and
received payoffs, making it problematic to dissociate the asso-
ciated neural signals. Finally, to speed up game play, we replaced
the standard matrix form display, which can be unintuitive even
to highly educated subjects, with an interface that directly
reflected the logic of the game (Fig. 1). In contrast, previous
behavioral experiments yielding comparable behavior lasted over
2 h (SI Results and Table S1).

Results
Model Fits to Behavior. To characterize and disaggregate neural
signatures of these two learning rules and their relationship to
behavior, we adopted a hybrid model—experience weighted at-
traction—that combines and nests both reinforcement and belief
learning (11, 15). The crucial insight connecting reinforcement
and belief learning is to weight beliefs by using payoffs to obtain
action values. That is, whereas action values are reinforced di-
rectly by the obtained outcomes in RL, in belief learning, they
are weighted by beliefs that players hold about future actions of
other players (SI Methods). This hybrid approach has been highly
successful in explaining behavior across a wide range of games,
thus offering a model-based framework to characterize the rel-
ative contributions of the two learning rules (3, 11).
Consistent with previous behavioral studies (3), the hybrid

model outperformed both RL and belief learning models alone
in explaining choices of subjects, as measured by the Bayesian
Information Criterion penalizing for number of free parameters
(Fig. 2A). In contrast, there was no significant difference be-
tween the base reinforcement and belief learning models. To
account for overfitting, we conducted out-of-sample predictions
by using holdback samples and found that the results were
consistent with in-sample fits (Fig. 2B).

Separable Contribution of RL and Belief Inputs. Critically for our
goal of disaggregating the neural signatures of the two learning
rules, we next investigated whether behavior in the Patent Race
was driven by subjects engaging in both reinforcement and belief
inputs at the individual level, rather than a mixture of distinct
types of pure reinforcement and belief learners. Using the hybrid
model parameter ∂i that governs the weighting between the two
learning rules, we found that the individual estimates were dis-
tributed along the unit interval, rather than clustered at the
boundaries as would be expected if the population consisted of
distinct types (Fig. 2C and Table S2). This variation further
allowed us to use these estimates as a between-subject measure
in subsequent neuroimaging analysis. To test the robustness of
our estimates to assumptions of the hybrid model, we used the
log-likelihood ratio between RL and belief learning models and
found that this measure was significantly correlated with ∂i
(Pearson ρ = 0.70, P < 0.01, two-tailed; Fig. 2C). This analysis
can be interpreted as a model-free check that our individual
difference measure was not unduly driven by assumptions un-
derlying the hybrid model.
To illustrate the separable contributions of the respective

learning rules to behavior, we compared the empirical choice
frequencies of a single subject in the Weak role exhibiting both
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Fig. 1. Patent Race game. (A) After a fixation screen of a random duration between 4–8 s, subjects were presented with the Patent Race game for between
1–2 s, with information regarding their endowment, the endowment of the opponent, and the potential prize. (B) Subjects inputted the decision (self-paced)
by pressing a button mapped to the desired investment amount from the initial endowment. (C) After 2–6 s, the opponent’s choice was revealed. If the
subject’s investment is strictly more than those of the opponent, the subject won the prize; otherwise, the subject lost the prize. In either case, the subject
kept the portion of the endowment not invested.
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types of learning (∂i = 0.47) to simulations using the respective
models (Fig. 2D). RL missed the increased probability of
investing 4 in rounds 30–50. This corresponded to periods when
Strong players invested one to three units with a high probability.
In contrast, belief learning captured this change but over-
estimated its magnitude. By combining the two learning rules,
the hybrid model was able to capture both the direction and
magnitude of changes in investments reasonably well.

Ventral Striatum Activity Correlated with Both RL and Belief-Based
Prediction Errors. Having characterized behavior of subjects
computationally, we next sought to identify the brain regions
where neural activity was significant correlated with the internal
signals of each model. At the time of outcome, according to the
TD form of the hybrid model, players update their action values
by using a combination of the RL and belief components (SI
Methods). Critically, the correlation between the two types of
prediction errors is sufficiently low (Pearson ρ ≃ 0.28; Table S3)
for us to characterize the unique contribution of the underlying
neural signals.
First, we found that the RL prediction error was significantly

correlated with activity in bilateral putamen and a small region in
the cerebellum (Fig. 3A and Table 1). The RL prediction error
is defined as the difference between expected and received
rewards, and the striatum has been consistently implicated in
encoding this quantity in fMRI studies of reward learning (16,
17). In contrast, we know much less about the neural under-
pinnings of belief learning. Studies of mentalization in social
neuroscience have suggested that medial prefrontal cortices
(mPFC) and temporo-parietal junction (TPJ) mediate social
cognitive processes such as belief inference (18). However,
studies on reward-guided behavior in social settings have sug-
gested that these computations build on the same brain struc-
tures associated with reward, including the striatum, rostral
anterior cingulate (rACC), and orbitofrontal cortex (19). Thus,

using our model-based framework, we next sought to localize
neural signatures associated with belief learning.
Surprisingly, we found that the belief prediction error for the

chosen action was also correlated with activity in the putamen,
but also extending to parts of the ventral caudate (Fig. 3B). To
assess the robustness of this result to the correlation between the
regressors, we searched for brain regions correlated with the
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Fig. 2. Computational model estimates and single subject exhibiting both RL and belief learning. (A) In-sample model fit comparisons using the Bayesian
Information Criterion showed that the hybrid model fits behavioral choices significantly better than RL and belief learning (paired Student’s t test, P ≤ 0.01,
two-tailed), whereas RL and belief learning did not differ significantly among themselves. Error bars indicate SEM. (B) Out-of-sample predictive power was
also superior for hybrid model compared with RL and belief learning (paired Student’s t test P ≤ 0.01, two-tailed). Error bars indicate SEM of log-likelihood
differences. (C) Individual variation in the relative weights placed on RL and belief learning can be captured by using parameter δi of the hybrid model. As δi
increases, behavioral fit of belief learning improves relative to that of the RL (Pearson ρ = 0.70, P < 0.01, two-tailed). (D) Illustration of behavior and model
predictions using a single subject in the Weak role exhibiting both RL and BB learning. Empirical time series of choice is plotted by using a 15-round bin
average. Choice probabilities were generated from calibrated models by using RL, belief, and hybrid learning models, respectively.
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Fig. 3. Ventral striatal responses to RL and belief prediction errors. (A)
Coronal sections and glass brain of putamen activation to the RL prediction
error (P < 0.001 uncorrected, cluster size k ≥ 20). (B) Significant activation of
bilateral putamen and ventral caudate to the belief prediction error for the
chosen action (P < 0.001 uncorrected, k ≥ 20). (C) Region of interest analyses
show that activities in bilateral ventral striatum (Table 1) were significantly
correlated with both RL and belief prediction errors; error bars indicate SEM.
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unique share of variance attributed to RL and belief prediction
errors, respectively. That is, we simultaneously included both the
RL prediction error and the orthogonalized belief prediction
error, and we verified that the striatal activation remained sig-
nificant using this procedure (Fig. S2). The same procedure was
used in reverse as a robustness check on the striatal activation to
the RL prediction error.

Rostral ACC Activity Uniquely Correlated with Belief-Based Prediction
Error. In contrast, we found that activity in the rACC extending to
the mPFC was correlated with only the belief prediction error
(P < 0.001, uncorrected, cluster size k ≥ 20; Fig. 4A and Table 1),
and not with RL prediction error even at a liberal threshold of

P > 0.5. To verify the functional selectivity of the belief pre-
diction error in the rACC, we conducted a paired Student’s t
test on the average beta values of the rACC activation and found
that betas associated with belief prediction error were signifi-
cantly greater than those for the RL prediction error (P <
0.05, two-tailed, Fig. 4B).
To investigate modulation of the two learning rules, we ex-

amined between-subject variability in the weighting placed on
belief learning inputs by correlating the estimated behavioral
parameter ∂i to the neural response to the belief prediction error.
Using brain regions that were found significantly correlated with
the belief prediction error as regions of interest, we found that ∂i
was correlated with individual differences in activation of rACC
(Pearson P = 0.66, P < 0.01, two-tailed; Fig. 4C), but not in the
striatum (P > 0.5). That is, we found subject who assigned higher
weights to belief learning behaviorally exhibited greater neural
sensitivity in the rACC to the belief prediction error.

fMRI Correlates of Hybrid Model. Finally, to test our hypothesis that
the neural correlates of hybrid prediction error can be dis-
aggregated into RL and belief-based components, we searched
for brain regions significantly correlated with the hybrid predic-
tion error. We found that the activations to the hybrid prediction
error were contained by the union of activations associated with
the RL and belief prediction errors, in particular the ventral
striatum and the mPFC, and also parts of the occipital cortex and
cerebellum (Table 1 and Fig. 5). In contrast, we found that re-
ward predictions during the response period for all three models
were represented in overlapping areas of the ventromedial PFC
(Fig. S3). This finding thus suggests that inputs converge at the
time of choice and is consistent with findings in animal literature
of hybrid-type signals in sensory-motor regions (20).

Discussion
Notions of equilibrium, such as the well-known Nash equilibrium
and related notions such as quantal-response equilibrium (21),
are central to theories of strategic behavior. It has long been
recognized, however, that equilibria do not emerge spontane-
ously, but rather through some adaptive process whereby
organisms evolve or learn over time, which cannot be accounted
for by purely static equilibrium models (3). Here, we studied the
neural correlates of the adaptive process by using a unique multi-
strategy competitive game. Our results show how the brain

Table 1. List of brain activations responding to RL, belief, and hybrid prediction errors

Cluster level Voxel level*

Model Region pcor Voxels pfdr T-val X Y Z

Reinforcement R ventral striatum 0 120 0.004 6.01 24 4 0
L ventral striatum 0.001 91 0.004 5.87 −28 −4 0
R cerebellum 0.093 30 0.025 4.19 18 −60 −28

Belief-based R ventral striatum 0 334 0 7.22 18 7 −7
L ventral striatum 0 294 0 5.9 −14 10 −10
rACC/mPFC 0 224 0.001 4.96 7 38 7
R superior frontal gyrus 0.023 51 0.005 4.2 18 28 49
R occipital cortex 0.057 39 0.009 3.9 14 −88 14
L occipital cortex 0.107 31 0.013 3.72 −14 −84 7

Hybrid R putamen 0 234 0 8.51 14 7 −7
L putamen 0 148 0.004 6.91 −14 7 −10
rACC/mPFC 0 150 0.18 5.3 7 38 35
Occipital cortex 0 347 0.172 5.32 7 −84 4
Cerebellum 0.111 28 0.006 4.64 −4 −56 −38

Regions significantly correlated with the different notions of prediction errors derived from the three models
considered in this study. All activations survived a threshold of P < 0.001, uncorrected, and cluster size k ≥ 20. L,
left; R, right.
*Voxel locations given in MNI Coordinates.

A

B C

Fig. 4. Rostral ACC responds uniquely to belief prediction error. (A) Sagittal
section and glass brain of rACC activation to the belief prediction error as-
sociated with the chosen action (P < 0.001 uncorrected, cluster size k ≥ 20).
(B) Neural activity in the rACC is correlated only with belief and not with RL
prediction error, error bars indicate SEM. (C) Between-subject neural re-
sponse to the belief prediction error in rACC is correlated with individual
differences in behavioral engagement of belief learning as measured using
∂i estimates (Pearson P = 0.66, P < 0.01, two-tailed).
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responds to multiple notions of prediction errors derived from
well-established behavioral models of strategic learning in a
partially overlapping but distinct set of brain regions known to be
involved in reward and social behavior.
First, we found that activity in the ventral striatum was cor-

related with both the RL and belief prediction errors. Unlike the
RL prediction error, which has been extensively studied (16, 17),
the belief prediction error corresponds to the discrepancy be-
tween the observed and expected frequency of actions of an
opponent weighted by the associated payoffs. Thus, unlike RL
models, belief learning predicts that players will be sensitive to
foregone (or fictive) payoffs in addition to the received payoffs.
Various notions of foregone payoffs have been studied in neu-
roimaging experiments of decision-making and reward learning,
including fictive error, regret, and counterfactuals (22–24). Un-
like these measures, our belief learning prediction error does not
involve direct comparison of the possible payoffs, but rather
requires subjects to incorporate their knowledge of the structure
of the game to track payoffs associated with all actions to update
their value estimates.
The overlapping set of activations in ventral striatum can

potentially shed light on previous neuroimaging studies of social
exchange games. These studies have consistently found neural
signals that qualitatively resemble prediction errors in the stria-
tum (25, 26). Our results raise several interesting possibilities
regarding contents of the neural encoding. First, these regions
may, in fact, contain, or receive information from, neurons
whose activity represents multiple notions of prediction errors,
including those related to belief-based considerations we study
here. Alternatively, information processing in these regions may
be sensitive to, or correlated with, beliefs and/or foregone pay-
offs, without necessarily encoding a literal belief prediction er-
ror. Future research will be needed to unravel the precise nature
of the information processing in these regions.
In contrast to the ventral striatum, we found that activity in the

rACC responded to the belief, but not the RL, prediction error.
This finding is consistent with known roles of rostral and caudal
ACC for error (27, 28) and conflict processing (29, 30), and in
the social domain, mentalization and belief inference (18). When
activation involves more anterior and rostral portions of the
ACC, as in our case, it is usually in tasks with an emotional
component (31, 32). Therefore, it seems a good candidate to
modulate error processing and learning when it has a higher
level, social, or regret based flavor (33). Furthermore, and unlike

the putamen involvement in belief prediction error, rACC ac-
tivity reflected individual differences in the sensitivity to belief
inputs (Fig. 5B). Thus, although it is an open question precisely
how these prediction errors interact at the trial level, these
results suggest the role of rACC as a control region that mediates
the degree of influence played by belief learning.
This distributed representation of different forms of pre-

diction errors is consistent with other recent computational
accounts of social behavior distinguishing between reward and
social learning inputs. In a reward learning task where partic-
ipants received social advice, activity in dorsomedial PFC was
correlated with prediction errors associated with confederate’s
fidelity, whereas activity in the ventral striatum was correlated
with the standard reward prediction error (34). A similar disso-
ciation was found in an observational learning setting between
the dorsolateral PFC and ventral striatum in encoding of ob-
servational and reward prediction errors, respectively (35). Un-
like these studies, however, we found that activity in the ventral
striatum contained both RL and belief updating signals. Al-
though speculative, we conjecture that these differences may in
part reflect differences in the cognitive demands for behaving in
strategic settings versus more passive types of social learning,
where subject’s payoffs are not directly affected by the action of
the other agents. Such a hypothesis can be tested by using studies
that manipulate dependence of payoffs in strategic interactions.
Moreover, our results complement and extend current under-

standings of the role of the rACC and mPFC in mentalization in
economic games. The rACC, but not the mPFC, was shown to be
activated in subjects exhibiting first-level reasoning in an iterative
reasoning game, whereas the reverse was true for subjects ex-
hibiting second-level reasoning (36). Similarly, mPFC but not the
rACC was implicated in higher-order mentalization in a com-
petitive game (10). Together with our findings, these results raise
the interesting possibility that more ventral mPFC regions, in-
cluding rACC, are involved in first-order belief inference, and
more dorsal regions in higher-order inferences. Such a functional
division is consistent with previous proposals in the mentalization
literature (18) and may reflect differences in the type of infor-
mation being learned. That is, in addition to responding to history
of actions of opponents, players engaging in higher-order men-
talization may also respond to beliefs about the learning param-
eters of opponents (10). Future studies combining computational
models of higher-order mentalization with games that directly
manipulate the level of strategic reasoning of the players will be
necessary to test this hypothesis.
Strategic learning is ubiquitous in social and economic inter-

actions, where outcomes are determined by joint actions of the
players involved, and is in sharp distinction to more passive social
learning environments where social information could be ma-
nipulated independently of outcomes. The inherent correlation
between actions and payoffs in strategic environments, however,
introduces important methodological hurdles in disentangling
the contributions of the underlying learning rules at both be-
havioral and neural levels. We were able to characterize them
only through a tight integration of experiment design, compu-
tational modeling, and functional neuroimaging. More broadly,
our results add to the growing literature suggesting that neural
systems underlying social and strategic interactions can be
studied in a unified computational framework with those of re-
ward learning (19, 37). Although the current study is restricted to
a specific competitive game, there is a wealth of theoretical and
behavioral studies that suggest these learning rules generalize to
other strategic settings, including not only competitive games but
also those involving cooperation, iterative reasoning, or ran-
domization (3). Such a general framework opens the door to
understanding the striking array of social and behavioral deficits
that appear to have their basis in damage and dysfunction related

-2

2

6

10

RL

BB

EWAN
eu

ra
l 

 

x = 0 y = 7 R

R Putamen

B

A

L PutamenrACC

RL

BB

Hybrid

Fig. 5. Hybrid model prediction error activations. (A) Glass brain and sec-
tion of bilateral putamen rACC activation in response to hybrid model pre-
diction error (P < 0.001 uncorrected, cluster size k ≥ 20). (B) Neural betas
with respect to RL, belief, and hybrid prediction errors at three ROIs defined
by 8-mm sphere at the peak of hybrid model activation clusters (Table 1).
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to the same dopaminergic and frontal-subcortical circuits im-
plicated in our study (38).

Methods
Participants. Thirty-five healthy volunteers (19 female) were recruited from
Neuroeconomics Lab subject pool at the University of Illinois at Urbana–
Champaign (UIUC). Subjects had a mean age of 23.3 ± 4.6 y, ranging 19–47.
Of these subjects, five were excluded from the study because of excessive
motion and three because of repeating the same strategy for >95% of the
trials during the experiment.

Procedure. Subjects undergoing neuroimaging completed 160 rounds of the
Patent Race game (Fig. 1) in two scanning sessions lasting 15–20 min each,
alternating between Strong and Weak roles over 80 rounds, counter-
balanced (SI Methods). Informed consent was obtained as approved by the
Internal Review Board at UIUC. They were informed that they would be paid
the average payoff from a randomly chosen 40 rounds from each session
plus a $10 participation fee.

Behavioral Data Analysis. Details of the computational models used in the
analysis are provided in SI Methods. All models learned the value of actions
in a temporal-difference algorithm by tracking expected value of each ac-
tion. The values differed only in the type of information that was used to

form and update these expected values. For each model, we estimated by
maximizing, for each subject, the log-likelihood of predicted decision
probabilities generated by the models against the actual choices of subjects
(SI Methods).

fMRI Data Analysis.Details of the fMRI acquisition and analysis are provided in
SI Methods. Event-related analyses of fMRI time series were performed, with
reward prediction and prediction errors values generated from the re-
spective computational models. The decision event was associated with
choice probabilities, and the feedback event was associated with prediction
errors for chosen actions. All analyses were performed on the feedback
event data, except the expected reward region analysis (Fig. S3). Regressors
were convolved with the canonical hemodynamic response function and
entered into a regression analysis against each subject’s BOLD response data.
The regression fits of each computational signal from each individual subject
were then summed across their roles and then taken into random-effects
group analysis (SI Methods).
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SI Methods
Procedure. Before entering the scanner, subjects were given
instructions and completed a quiz to ensure comprehension of the
game. In the Patent Race, players were matched at random at the
beginning of each round and competed for a prize by choosing an
investment from their respective endowments. The player who
invested more won the prize, and the other lost. In the event of
a tie, both lost the prize. Regardless of the outcome, players lost
the amount that they invested (Fig. 1). In the particular payoff
structure we used, the prize was worth 10 units, and the Strong
(Weak) player was endowed with 5 (4) units.
To overcome logistic difficulties of conducting simultaneous

experiments with upwards of 16 subjects for each neuroimaging
subject, and to minimize unobserved session effects in opponent
play associated with such a protocol, we matched subjects with
choices from a pool of players who previously participated in
behavioral sessions. Importantly, subjects were informed that they
played in the same sequence as the pool players. That is, if the
scanner subject was playing in round 60, the choice of opponent
was drawn randomly from round 60 of one of the pool players
(SI Results).

fMRI Scanning Parameters. Functional MR images were obtained
for each subject by using a 3.0 Tesla Siemens Allegra scanner
located at the research-dedicated Beckman Imaging Center
(BIC) at the University of Illinois at Urbana–Champaign. Images
were acquired by using echo-planar T2* images with BOLD
(blood oxygenation-level-dependent) contrast, and angled 30°
with respect to the AC-PC line to minimize susceptibility artifacts
in the orbitofrontal cortex (1). MR imaging settings were as fol-
lows: repetition time (TR) = 2,000 ms; echo time (TE) = 40 ms;
slice thickness = 3 mm yielding a 64 × 64 × 32 matrix (3 mm ×
3 mm × 3 mm); flip angle = 90°; FOV read = 220 mm; FOV
phase = 100 mm, interleaved series order. High-resolution
structural T1-weighted scans (1 mm × 1 mm × 1 mm) were ac-
quired by using an MPRage sequence. Visual stimuli were pre-
sented by means of a mirror mounted on the MRI head coil, and
responses were acquired via an MRI-safe button response pad
(Neuroscan).

ComputationalModeling.To characterize the relative contributions
of reinforcement (RL) and belief-based learning to behavior, we
considered three different models of learning: reinforcement
learning, belief-based learning, and their hybrid, experience-
weighted attraction (EWA). We first describe the hybrid model
because it contains RL and belief learning models as special cases
(2). First, denote ski as strategy k for player i, si(t) is the chosen
strategy by player i at period t, and s−i(t) is the chosen strategy of
the opponent at period t. Player i’s expected reward, Vk

i ðtÞ, for
playing strategy ski in period t is governed by three parameters
and updates according to the following:

Vk
i ðtÞ ¼

8>>><
>>>:

ϕi·Nðt− 1Þ·Vk
i ðt− 1Þ þ πiðski ; s−iðtÞÞ
NðtÞ ; if ski ¼ siðtÞ

ϕi·Nðt− 1Þ·Vk
i ðt− 1Þ þ δi·πiðski ; s−iðtÞÞ

NðtÞ ; if ski ≠ siðtÞ;

[S1]

where parameter ϕi and function N(t) = ρi·N(t − 1) + 1 capture
different aspects of the depreciation of Vk

i   ðtÞ. For example, if
the player believes his opponent is a fast adaptor, he will have

a small ϕi that depreciates past values faster. In contrast, ρi is the
discount rate for the strength of past experience N(t), and con-
trols the influence of the out-of-game prior beliefs. If ρi is large,
the out-of-game prior beliefs will wear off quickly. The third and
most important parameter for our study, δi, is the weight be-
tween foregone payoffs and actual payoffs when updating values,
and reflects one of the key insights of the hybrid model that
belief learning is equivalent to a model whereby actions are re-
inforced by foregone payoffs in addition to received payoffs as in
RL models. Thus, δi can be interpreted as a psychological in-
clination toward belief learning (2). That is, the hybrid model
reduces to the RL model when δi = 0, and the belief learning
model when δi = 1.
In belief learning, we also impose the restriction that the

initial attractions are expected payoffs given some underlying
probabilistic belief inference of the subject, that is, Vk

i ð0Þ ¼P
mq

m
−ið0Þ× πiðski ; sm−iÞ, where qm−ið0Þ is player i’s initial belief

about the likelihood of his opponent adopting sm−i . Hence,
qm−ið0Þ ≥ 0 and

P
mq

m
−ið0Þ ¼ 1. The restriction ensures that in

all of the trials that follow the belief learners update a proba-
bilistic belief inference regarding the next move of the oppo-
nents rather than an unconstrained vector of fictive errors
defined as the discrepancy between forgone payoffs and pre-
vious attraction values.

Behavioral Data Analysis.To calibrate the models given behavior of
the subjects in the game, we estimated parameters of each model
by using responses of subjects by maximizing the logistic log
likelihood of the model predictions. To convert values into
choices, we used a logit or softmax function to calculate the
probability of player i playing strategy k in the next round,
pki ðtþ 1Þ ¼ eλi :V

k
i ðtÞ=PL

l¼1e
λi:V l

i ðtÞ, where λi is a measurement of

sensitivity of subjects to difference in expected reward associated
with the different actions.
Using these choice probabilities, we performed maximum

likelihood estimation with a grid search over a large range of
values for all free parameters in all estimations, because the
likelihood function is not globally concave. Both pooled and
individual-level estimations were performed. For pooled esti-
mation, we aggregated observations conditional on the roles of
the subjects and then fit the choice data by maximizing the log
likelihood of the observed choices over rounds for subject i. That
is,

P
i
P

tlogðpsiðtÞi ðtÞÞ. Although using pooled estimates is more
robust in general, it removes the possible individual variation
in learning, and will bias estimates due to heterogeneity (3).
Therefore, we also performed estimation at the individual level.
The primary challenge of individual estimation is the relatively
small sample size compared with the number of free parame-
ters. We approached this problem with two methods combined:
(i) estimating a common set of initial attractions shared by all
subjects with the same role, from the pooled first period of data,
conditional on the role of the subject and (ii) self-tuning esti-
mation as introduced in Ho et al. (4). As a robustness check, we
also conducted individual level estimation with partially joint
estimates across different roles, assuming each subject shares
a subset of learning parameters (e.g., the decay rate of the
initial belief) regardless of her role in the game. We found that
the estimates to be robust across these different estimation
strategies.

Conversion to Temporal Difference Form. To derive trial-by-trial
predictors for use in neuroimaging analysis, we converted the
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respective models above to a TD form whereby learning results
from updating reward predictions through a prediction error.
Choice probabilities and prediction errors on each trial were then
generated by using the best-fit parameters derived from the be-
havioral data estimation. That is, we separated player i’s expected
reward, Vk

i ðtÞ, for playing strategy ski in period t into a reward
prediction Vk

i ðt− 1Þ, and the prediction error that is the differ-
ence between the expected reward and obtained (foregone) re-
ward πiðski ; s−iðtÞÞ. In the hybrid model, the expected reward thus
evolves according to:

In contrast, RL updates by reinforcing only the chosen strategy,
whereas belief learning updates by reinforcing all available
strategies proportional to the possible rewards:

fMRI Data Analysis. Image analysis was performed by using SPM2
(Wellcome Department of Imaging Neuroscience, Institute of
Neurology, London). Preprocessing included, in order: slice time
correction (centered at TR/2), motion correction, coregistration,
spatial normalization to the Montreal Neurological Institute
(MNI) template, and spatial smoothing using an 8-mm Gaussian
kernel (5). All images were also high-pass filtered in the tem-
poral domain (width 128s) and autocorrelation of the hemody-
namic responses was modeled as an AR(1) process.
Analyses of fMRI time series were done by using standard

random effects models (6), with reward prediction and prediction
error values generated from the respective computational mod-
els calibrated on choices of subjects at the individual level. An
event-related design was used where regressors were included
for the decision and feedback events of the trials (Fig. 1). That is,
for each subject, we constructed a (first level) general linear
model (GLM) consisting of two events: an event at the time of
decision, and one at the time of feedback. Regressors were
constructed by using the trial-by-trial outputs from the TD form
of the best-fitting individual parameter estimates. The decision
event was associated with choice probabilities, which can be re-
garded as relative reward predictions controlled for time in-
fluence. The feedback event was associated with prediction
errors for chosen actions. All analyses were performed on the
feedback event data, except the expected reward region analysis
(Fig. S3). The first eight rounds were excluded from the GLM
analysis to allow initial values to stabilize. Regressors were
convolved with the canonical hemodynamic response function
and entered into a regression analysis against each subject’s
BOLD response data. The regression fits of each computational
signal from each individual subject were then summed across
their roles and then taken into random-effects group analysis.

SI Results
Comparison of Behavior Across Experimental Protocols. To measure
the effectiveness of this protocol, we compared both aggregate
choices and model estimates among (i) our neuroimaging sub-
jects, (ii) our behavioral subjects, and (iii) Rapoport and
Amaldoss’s original experiment (7) (Table S1). Proportions of
choices are similar, as are parameter estimates across the three
different datasets. We found no evidence that the pool player
protocol systematically affected behavior of players.

To further check the robustness of our pool player protocol, we
compared behaviors in our strategic setting versus those in
a matching but nonstrategic reward task. In the reward treatment,
we replaced the human pool players with a computer algorithm.
In contrast to the strategic treatment, subjects in the reward

treatment were told to exceed a random hurdle determined by the
computer to win the prize. Subjects were informed that they are
playing against a computer algorithm. All other aspects of the
instructions remained identical. In terms of the game display, the
only difference was that in the reward treatment, the word
“Opponent” was replaced with the word “Hurdle”.
We found that learning in a reward setting is primarily RL-

based. Using model-based estimates, we found that the hybrid δ
parameter was significantly greater in the strategic treatment
than the reward treatment (P < 0.01, two tailed). Visually, this
difference can be illustrated through the transition matrices of
the choices of players (Fig. S1). These matrices show how players
switched their choices from one trial to the next and are gen-
eralizations of more traditional switch/stay measures (2). The
diagonal elements indicate choices in which subjects stayed,
whereas off-diagonals indicate switches.
The most striking features are the similarities between the

transition matrices of the strategic treatment and the belief
learning simulation (Fig. S1 A and C) and between reward
treatment and RL simulation (Fig. S1 B and D). In particular,
whereas players in the strategic treatment switched quite often,
players in the reward treatment repeatedly played the same
strategies, rarely switching between strategies from trial to trial.
This behavior is apparent in that most of the mass of the tran-
sition matrix for the RL treatment and simulation is located
along the diagonal (indicating stay trials) at investments of 1, 3,
and 5 (Fig. S1B). At the aggregate level, the switch rate in the
strategic treatment was 0.56 (exactly that of the Nash equilibrium
prediction) versus 0.32 for the reward treatment. This finding is
thus is consistent with the hypothesis that learning in the reward
treatment is subserved primarily by reinforcement learning,
which adapts more slowly.

VEWA
i;k ðtÞ ¼

8>><
>>:

VEWA
i;k ðt− 1Þ þ 1

NðtÞ
n
πiðsi;k; s−iðtÞÞ−VEWA

i;k ðt− 1Þ
o

if si;k ¼ siðtÞ

VEWA
i;k ðt− 1Þ þ 1

NðtÞ
n
δi·πiðsi;k; s−iðtÞÞ−VEWA

i;k ðt− 1Þ
o

if si;k ≠ siðtÞ:|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Reward Prediction

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Prediction Error

[S2]

RL : VRL
i;k ðtÞ ¼

8<
:VRL

i;k ðt− 1Þ þ ð1−ϕiÞ
�

1
1−ϕi

πðsi;k; s−iðtÞÞ−VRL
i;k ðt− 1Þ

�
if si;k ¼ siðtÞ

ϕi·V
RL
i;k ðt− 1Þ if si;k ≠ siðtÞ

[S3]

BB : VBB
i;k ðtÞ ¼ VBB

i;k ðt− 1Þ þ 1
NðtÞ

n
πðsi;k; s−iðtÞÞ−VBB

i;k ðt− 1Þ
o
; ∀ si;k [S4]

Zhu et al. www.pnas.org/cgi/content/short/1116783109 2 of 5

www.pnas.org/cgi/content/short/1116783109


Correlation of RL and Belief-Based Prediction Errors. Table S3 shows
the correlation between the prediction errors associated with the
three models under consideration. Crucially, we find that the
correlation between RL and belief prediction errors is low
(Pearson ρ = 0.28). The statistical separation between the
model-generated learning signals indicates the potential to dis-
entangle the unique contributions of the different types of
learning signals. The correlation of reinforcement and belief-
based learning with the hybrid model is not surprising, given the
reinforcement and belief learning are nested models.

Orthogonality Tests on Robustness of Brain Activations.Although the
correlation between RL and belief prediction errors was low, we
nevertheless sought to investigate whether our reinforcement and
belief prediction errors are robust to orthogonalization of the

regressors. We verified that activations in response to RL and belief
prediction errors remain after they are orthogonalized against each
other (Fig. S2). The procedure is same as those described in ref. 8.

Expected Reward Regions. We found activity in ventromedial
prefrontal cortex, extending to rACC and medial orbitofrontal
cortex, to be correlated with the relative expected reward value of
the chosen action (Fig. S3). The relative expected reward is
defined as the probability generated from the different models for
the chosen action at the time of response on a given trial. We used
this notion to remove the possible time trend in the absolute
expected reward values. This result is consistent with existing
evidence on the role of orbital and adjacent medial prefrontal
cortex in encoding predictions of future reward (9, 10).
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Fig. S1. Comparison of strategic and reward learning in Strong role. (A and B) Empirical frequency of transitions for strategic and reward treatments, re-
spectively. (C and D) Transition matrices of simulations using belief and reinforcement learning models, respectively. Note behavior in strategic treatment is
qualitatively more similar to the belief learning simulation, whereas reward treatment is more similar to the RL simulation.
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x = 10 

A. Belief Prediction Error B. RL Prediction Error
z = 7 

Fig. S2. Robustness check for orthogonalization between RL and belief learning prediction errors. (A) Belief learning prediction errors after orthogonalization
against RL prediction errors. (P < 0.001, uncorrected, cluster size k > 10 voxels). (B) RL prediction errors after orthogonalization against belief learning pre-
diction errors. (P < 0.001, uncorrected, cluster size k > 10 voxels).

x = 5 y = 38 R

Fig. S3. Expected reward regions. Activity in ventromedial prefrontal cortex, extending to rACC and medial orbitofrontal cortex, is correlated with respect
to relative expected reward value of the chosen action calculated under the hybrid (red), belief (yellow), and RL (green) models (P < 0.005 uncorrected, cluster
size k ≥ 5).

Table S1. Comparison of Nash equilibrium predictions and empirical distributions from (i) Rapoport and Amaldoss (1), (ii) our behavioral
experiment, (iii) our neuroimaging experiment, and (iv) a reward learning control session

Empirical distributions

Role Investment Equilibrium prediction, % Matrix form, % Behavioral session, % Neuroimaging session, % Reward learning, %

Strong 0 0 1 0 1 1
1 20 17 14 18 11
2 0 5 6 10 6
3 20 9 13 11 16
4 0 13 25 16 11
5 60 55 43 45 54

Weak 0 60 55 49 49 30
1 0 3 3 4 12
2 20 6 10 7 18
3 0 14 10 14 8
4 20 22 28 27 32

Empirical distribution is proportion of all players’ choices over all rounds.

Table S2. Median individual level estimates

Model δ ϕ λ

Reinforcement 0* 0.94 (0.86, 0.96) 0.04 (0.02, 0.07)
Belief-based 1* 0.95 (0.83, 0.98) 0.60 (0.23, 2.11)
Hybrid 0.46 (0.29, 0.69) 0.71 (0.53, 0.81) 0.51 (0.32, 0.70)

Parentheses contain first and third quartile of empirical distribution.
*Parameters constrained by model.
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Table S3. Correlation coefficient between the prediction errors
from different learning models

Model Reinforcement Belief-based Hybrid

Reinforcement — (0.16) (0.10)
Belief-based 0.28 — (0.18)
Hybrid 0.63 0.40 —

Parentheses contain SDs for the correlation coefficients.
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