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O U T L I N E

    INTRODUCTION 

   The goal of this chapter is to review recent neuro-
biological evidence to improve our understanding of 
human valuation under uncertainty. Although ulti-
mately interested in human behavior, we will borrow 
from studies of animals with related brain structures, 
namely, non-human primates. Specifically, we wish to 
explore how valuation is accomplished. As we shall 
see, the evidence rejects a pure  “ retrieval from mem-
ory ”  model; instead, values are  computed . This raises 
the issue: what computational model(s) are being 
used? Since actual choice can be summarized in terms 
of a single-dimensional utility index as in expected 
utility or prospect theory, we want to know how such 
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an index is computed, and to understand the effect of 
perceptual biases on this computation, as well as the 
role of emotions. How does the computational model 
generate the risk aversion that we may see in choices? 
Or, in ambiguous situations, how is ambiguity aver-
sion revealed in choices ( Hsu  et al ., 2005 ;  Huettel,  et al . 
2006 ;  Bali  et al ., 2008 ) and what model underlies it – for 
example, alpha-maxmin preferences ( Ghirardato  et al ., 
2004 ), anticipated regret ( Segal, 1987 ), or some other? 

   A natural question for economists is, if choice can 
be represented  “ as if ”  some utility index is maxi-
mized, why should we bother studying the com-
putational aspects behind choice? Our quest for the 
computational model underlying valuation has two 
purposes. First, we hope to be able to improve choice 
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prediction. We consider the utility index model as a 
reduced-form model of choice, which, in analogy with 
reduced-form models of the macro-economy, is sensi-
tive to circumstances – i.e., its parameters need to be 
revised every time one moves from one framework 
to another. This is the so-called  Lucas critique  ( Lucas, 
1976 ). This sensitivity, or lack of robustness, has been 
frequently noted in the literature as  “ framing effects. ”  
Our computational model, in contrast, is meant to be 
structural, and hence has a chance of outperforming 
the reduced-form utility index model. Of course, the 
proof is in the pudding  …  

   A computational model should not only enable 
us to accommodate framing biases; it should also be 
capable of capturing part, if not all, of the random-
ness one usually adds to a utility-based choice model 
to accommodate the erratic nature of observed choice. 
The traditional approach in applied economics has 
been to consider the utility index itself to be random, 
and to attribute certain distributional properties to 
this randomness that ultimately leads to a choice-
model based on logistic regression ( McFadden, 1974 ). 
The goal of exploring computational models of choice 
is to provide a different (computational) basis for the 
erratic nature of observed choice. 

   Artificial intelligence is the second reason why we 
are interested in the actual neurobiological computa-
tional model behind observed choices. Modern deci-
sion theory has been quite successful in prescribing 
learning and choice in well-defined situations. Once 
the complexity of the problem increases, however, 
decision theory has little concrete to propose. One case 
in point is the Iowa Gambling Task (IGT) ( Bechara and 
Damasio, 2005 ), which is a complex four-armed ban-
dit problem. To date, no-one has been able to spell out 
the optimal strategy in this task. Humans, however, 
can quickly learn the ordering (in terms of reward and 
risk) of the four bandits ( Bechara  et al ., 1997 ). 

   However, the learning model behind human choice 
in difficult situations such as the IGT is almost surely 
not Bayesian, despite the popularity of this approach. 
Open-ended situations, almost by definition, involve 
high-dimensional parameter spaces, and it is well 
known that Bayesian learning generically fails to con-
verge when the parameter space becomes large, while 
simple learning algorithms based on classical statis-
tics often do a very good job in capturing the essence 
of the stochasticity at hand ( Diaconis and Freedman, 
1986 ). This in turn leaves us the question, how do 
humans learn in such situations? What computa-
tional model are they using? If we knew this model, 
perhaps we could enrich decision theory to make it 
work in more open-ended or even ill-defined decision 
situations. 
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   One clue in the search is provided by the plethora 
of brain lesion data, much of it using the IGT (despite 
problems with interpretability – see  Dunn  et al ., 
2006 ), supporting the idea that specific brain regions 
underpin these computations. Of particular interest 
are the ventromedial prefrontal cortex and the amy-
gdala, as patients with lesions to these brain regions 
are impaired in the IGT while at the same time show-
ing normal or even superior performance in working 
memory, IQ, and decisions and games that are less 
open-ended (       Bechara  et al ., 1997, 1999 ). 

   In this chapter, we focus on valuation in the context 
of choice under uncertainty. The computational model 
that emerges from a study of the neurobiological data 
is one where expected rewards are traded off against 
risk (or, in the case of risk-seeking behavior, risk is 
added to expected reward). This model has been pop-
ular in finance, where risk is usually represented in 
terms of reward variance (although more advanced 
models take into account higher moments) – hence its 
name: the  mean-variance model . 

   The link between the utility models represent-
ing actual choice under uncertainty, such as expected 
utility and prospect theory, on the one hand, and the 
mean-risk model, on the other, is often clarified by 
means of Taylor series expansions ( Bali  et al ., 2008 ; see 
also  Box 23.1   ). One of the goals of this chapter is to 
demonstrate that the logic of a computational model 
based on a tradeoff between expected reward and risk 
can be extended to choice under ambiguity as well. 

   Throughout this chapter, we take the position that 
valuation stands on its own and makes sense even in 
the absence of choice. It makes sense because comput-
ing values take energy, and hence an organism that 
has learned to correctly compute the values of options 
it is forced to take on (imperative trials) will also be 
better able to determine the adequate choices when 
there is freedom (free-choice trials). As we shall see, 
brain activation when a subject is faced with gambles 
with uncertain outcomes is comparable across impera-
tive and free-choice trials. 

   When valuation is a pursuit distinct from choice, val-
ues revealed through choice may be different from the 
valuations that emerge from the (choice-independent) 
computations. So are economists interesting in know-
ing what the latter are? After all, economists are only 
interested in choice. We shall spend some time elab-
orating on this issue. Suffice it to say here that the 
distinction is important for welfare assessment. 

   The remainder of this chapter is organized as fol-
lows. The following section elaborates on the dis-
tinction between values the brain computes and the 
values revealed through choice. We then review the 
neurobiological foundations of valuation under pure 
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strong evidence that valuation is performed even in 
imperative trials, and in a way that is relevant for free-
choice trials. It shows how well a valuation model fit to 
neuronal activation during imperative trials can predict 
choice in free-choice trials. In fact, the neurobiological 
choice model predicts choices better than a utility-index 
based model estimated from the choices themselves! 
This demonstrates not only that valuation is done dur-
ing imperative trials, but that the resulting values are 
relevant for choice in free-choice trials as well. 

   Although brain activation during imperative trials 
reflects valuations that are compatible with the val-
ues revealed in free-choice trials, and hence that brain 
activation in imperative trials can be used to predict 
choice in free-choice trials ( Figure 23.1 ), the fit is not 
100%. These neurobiological data suggest that there 
are (at least) two value signals: one revealed through 
activation in brain regions not directly involved in the 
physical implementation of choice, and a second one 
revealed through activation of the neurons controlling 
the physical act of choice. Given economists ’  interest 
in choice, to what extent might they be interesting in 
knowing the former value signal? 

   The most important argument concerns welfare. 
What is it that the subject really wanted? Indeed, 
the mere presence of two (or more) valuation signals 
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   The expected utility approach, in which the 
decision-maker maximizes a weighted sum of the 
utilities, dominates in economics. In fi nance, how-
ever, mean-variance (or risk-return) models provide 
the central approach to decision-making. In it, the 
decision-maker trades off between mean (return) 
and variance (risk). The two approaches are related. 
There are conditions under which the two models 
are identical, such as when returns are approxi-
mately normal, or if the utility function is quad-
ratic ( Markowitz, 1952 ). More generally, the two 
can be linked by assuming that the mean-variance 
approach is an approximation of the utility function 
through a Taylor series approximation. 

   Specifi cally, given a utility function  U ( R ), where 
 R  is the rate of return in the current period, we can 
implement a second-order Taylor series approxima-
tion around the mean   µ        �       E (R), such that 

    U ( R )  �   U (  µ  )      �       U  � (  µ  )( R       �        µ  )      �       U  � ( R       �        µ  ) 2 . 

   The expected utility is therefore 

    E ( U ( R ))  �   U (  µ  )      �       U  � (  µ  )  σ   2 , 

   where the second term   σ   2       �       Var ( R ) is the variance 
of the return. 
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   BOX 23.1     

  M E A N - VA R I A N C E  U T I L I T Y    
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 FIGURE 23.1          Out-of-sample prediction accuracy (percentage 
correct) of two models of binary choice, as a function of the rank-
ing difference of the two options revealed through choice. The fMRI 
(passive) model uses as inputs activation in brain regions identified 
to be involved in valuation during purely imperative trials. The 
behavioral model is based on rankings revealed in choice in free-
choice trials. The parameters of both models are fit on free-choice 
trials. Prediction accuracy is out-of-sample, i.e., it is measured in 
free-choice trials not used for fitting the models. Neural activation 
identified in imperative trials (the fMRI model) predicts choices 
better than actual choice in free-choice trials when the two available 
options are close in ranking.   Adapted from  Berns  et al.  (2007) .    
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risk. The final section extends the logic of expected 
reward and risk to situations with ambiguity. We 
will not explore the neurobiological foundations of 
the translation of valuation into choice, as these are 
covered in later chapters in this volume.  

    DISTINGUISHING VALUATION 
AND CHOICE 

   In many human endeavors, valuation is per-
formed even in the absence of any immediate neces-
sity to choose. Again, finance is a case in point, in part 
because financial valuation is often complex and time-
consuming, while good choice opportunities are rare 
and short-lived. The cost of computing values pro-
vides a normative rationale for why valuation may be 
done in the absence of free choice.  Figure 23.1    provides 
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 FIGURE 23.2          (a) Amygdala activation correlates with contrast between lotteries cast in terms of gains and in terms of losses. (b, c) Contrast 
in prefrontal cortex activation between lotteries cast in terms of gains and in terms of losses increases with subjects ’  rationality index. This 
index is measured as the difference between the proportion of trials in which subjects chose the gamble in the loss frame, as compared to the 
gain frame, and then linearly transformed such that 1 is the most rational.   Adapted from  De Martino  et al . (2006) .        
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of attention, and hence is optimal for an organism that 
has to spend effort to interpret the true meaning of 
stimuli around itself. It may be considered a  “ habit, ”  
but the neuroscience literature reserves the term 
 habit  for actions that are stimulus-sensitive but goal-
insensitive ( Yin  et al ., 2004 ). In contrast, default actions 
are stimulus-insensitive and goal-oriented. They are 
not instincts, either, because they can be learned. 

   Recent neurobiological evidence provides support 
for the notion of default actions. Choice in loss situa-
tions appears to be associated with activation in amy-
gdala, irrespective of a subject’s tendency to take on 
risk. Orbitofrontal cortex (OFC) activation, however, 
decreases with subjects ’  tendency to become risk-
seeking with losses ( Figure 23.2   ). These data suggest 
a very different valuation model underlying choice, 
based on default actions that need to be overcome 
in situations where these actions are inappropriate – 
yet not everyone manages to over-ride the default. In 
this interpretation of the data, amygdala activation 
engages the default action, while OFC is engaged in 
over-riding this choice when inappropriate. Perhaps 
no one wants to be risk-seeking  for  monetary losses, 
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suggests that there may be a difference between what 
subjects wanted and what they did. We may never be 
able to determine what exactly subjects wanted (i.e., 
to extract their true preferences), but a better under-
standing of how the various value signals are put 
together may help us to better appreciate the differ-
ence between revealed and true preferences. 

   It is fundamental to question coincidence of 
revealed and true preferences (psychologists would 
distinguish between decision and experienced utility – 
see  Kahneman  et al ., 1997 ). Is a utility-index model 
such as prospect theory a preference theory? Prospect 
theory is known to fit choice well, but do the values 
of its utility index reflect real preferences? The insist-
ence on deriving choice-theoretic axiomatic founda-
tions for prospect theory ( Kahneman and Tversky, 
1992 ) indicates that economists consider prospect 
theory to be a preference theory. However, the risk-
seeking attitude towards losses that is implied by 
prospect theory, for instance, may not reflect context-
adapted goal-oriented behavior, but a  “ default action ”  
that is appropriate to maximize experienced utility 
only on average. The default action is robust to lapses 
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but many subjects cannot overcome their tendency to 
become risk-seeking under adverse conditions. 

   More generally, it is not so much the value signals 
that may be discerned in, for example, prefrontal cor-
tex (vmPFC) which are of importance. More relevant 
is the way the signals are computed: which brain 
regions are involved? What is the nature of their sig-
nals? How do they correlate with behavior? 

   The potential difference between true and revealed 
preferences is, in principle, not important for predict-
ing choice, yet it is of utmost important for welfare. At 
a mundane level, it should be asked whether bank-
ers and brokers ought to engage in eliciting the right 
prospect-theoretic utility index from their custom-
ers through, for example, questionnaires on past or 
hypothetical choices, to be used to determine optimal 
portfolios. This only makes sense if prospect theory 
captures true preferences. If it does not, what is the 
point of deriving optimal portfolio choice from pros-
pect-theoretic preference profiles ( Gomes, 2005 )? 

   In fact, the mere difficulty of computing optimal 
choices should cast doubt on the interpretation of 
prospect theory as a preference theory. Indeed, an 
organism that truly behaves in a prospect-theoretic 
way must be endowed with tremendous capacity to 
compute optimal choices. To put it more bluntly, per-
haps organisms would be better off with logarithmic 
preferences, for which choices are easily computed – 
for example, one can be myopic ( Hakansson, 1971 ). 
In addition, this has the advantage that choices maxi-
mize survival probabilities ( Blume and Easley, 1992 )! 

   Data in  De Martino  et al . (2006)  could be 
re-interpreted to mean that choice is the result of valu-
ing the appropriateness of some default action, given 
the stimuli at hand, and, if inappropriate, effort to 
overcome one’s tendency to implement the default 
action. Recent single-unit recording of neurons in the 
monkey brain indicates that caudate plays a crucial 
role in the valuation of default actions.  Figure 23.3    
provides evidence. 

   In the task that generated  Figure 23.3 , a monkey 
had to fixate on the center of the screen and at a cer-
tain time move its eyes (execute a  “ saccade ” ) in the 
direction indicated by a prior stimulus. Only one 
direction was rewarded, however. To be precise, the 
chance that one direction would be rewarded was an 
order of magnitude higher than for the other direc-
tion. As it turns out, certain caudate neurons increase 
their firing rate at trial onset, even before the stimu-
lus, and hence the required direction of motion of the 
eyes, as well as the amount of the reward, is known. 
This firing reflects valuation of the default action – 
namely, to move the eyes in the direction that is most 
likely to be rewarded. When the stimulus appears, 
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neuronal firing either increases, reflecting confirma-
tion that the default action is correct, or decreases, sig-
naling that the default action is inappropriate ( Figure 
23.3 ). In fact, if the percentage of correct saccades is an 
indication, effort is involved in avoiding the default 
action. Indeed,  Lauwereyns  et al . (2002)  reported that 
the monkey made more mistakes (i.e., moved its eyes 
in the wrong direction) when the stimulus required a 
saccade in the less rewarding direction. 

   The firing pattern of the caudate neurons also casts 
doubt on random-utility models ( McFadden, 1974 ) as 
an explanation of behavior that is at odds with maxi-
mization of a fixed utility index. The pattern suggests 
that the apparent  “ erratic ”  behavior of the monkey (its 
mistakes) is the result of its inability to overcome the 
default action – for example, if the monkey moved its 
eyes in the direction that was rewarded with higher 
probability while the stimulus instructed it otherwise, 
it was not that its risk tolerance had increased so much 
as that it wanted to take the chance that its visual 
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 FIGURE 23.3          Average firing rates of a cluster of caudate neu-
rons in the monkey brain that encode the value of eye movements 
(saccades) in one  “ preferred ”  direction. In trials where this direction 
generates higher reward on average ( “ Best condition ” ), increase 
in firing starts several hundred milliseconds (ms) before stimu-
lus emerges (vertical line) that indicates which direction will be 
rewarded (top graph, labeled  “ mean ” ). Anticipatory increases in fir-
ing rates are absent in trials where the  “ preferred ”  direction receives 
the lower reward on average ( “ Worst condition ” ). After stimulus 
presentation, an increase is recorded in average firing rates across 
trials where the stimulus indicates reward for a saccade in the  “ pre-
ferred ”  direction, relative to average firing rates when saccades are 
instructed in the opposite direction. The difference (bottom graph) 
is the same for both  “ Best condition ”  and  “ Worst condition ”  trials. 
  From  Lauwereyns  et al.  (2002) .    
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inference (of the instructions revealed by the stimulus) 
was wrong. The mistake was caused by the monkey’s 
inability to overcome its default action (a saccade 
in the direction of reward with higher probability). 
Conversely, if the monkey did not make a mistake and 
moved its eyes in the direction of lower probability of 
reward, as instructed through the stimulus, it was not 
that the monkey became less risk-tolerant and did not 
want to take chances; instead, it overcame its natural 
inclination to saccade in the direction that tended to 
be rewarded with higher probability. 

   Even if the random-utility model ( Box 23.2   ) and the 
default-action valuation model predict choice equally 
well, economists should be aware that neurobiologi-
cal evidence favors the latter. This is because the wel-
fare implications of the two models are diametrically 
opposed. According to the random utility model, 
choice is always optimal. The agent makes different 
choices in two instances of the same situation only 
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because utility fluctuates. In the default-action valua-
tion model, however, choice is often sub-optimal – for 
example, the monkey wanted to move its eyes in the 
opposite direction, but could not because of the effort 
required to overcome its habit. Now imagine that 
some external correcting device can be provided using 
an effort that is less than that required for the monkey 
personally to overcome its action bias. In that case, 
welfare will improve. See  Bernheim and Rangel (2008)  
for further discussion of welfare assessment in a 
context where one needs to distinguish between 
 “ true ”  and  “ decision ”  utilities.  

    VALUATION UNDER PURE RISK: 
TRADING OFF RISK AGAINST REWARD 

   Pure risk is a situation where probabilities are 
known, either because they are given or because the 
agent has gone through lengthy training. Economists 
model choice under pure risk as if the agent maxi-
mizes a utility index based on a separation of proba-
bilities (of all possible states of nature) and utilities (of 
rewards in a state). This separation is known as  proba-
bilistic sophistication  ( Marinacci, 2002 ), and is common 
to virtually all preference models under pure risk 
(including prospect theory). 

   There appears, however, to be little neurobiological 
evidence for value computation based on separation 
of (state) probabilities and (reward) utilities. Instead, 
brain activation data suggest a separation of encoding 
of expected reward and of risk. 

   Evidence of encoding of expected reward, and the 
crucial role of the dopaminergic system, goes back a 
long way, to the investigation of firing of dopaminer-
gic neurons in the monkey midbrain in the face of sto-
chastic rewards ( Hollerman and Schultz, 1998 ). Closer 
study of the activation of these neurons has revealed 
that the signals actually reflect  errors  of predicting 
reward, and these errors form the crucial component 
of a simple yet versatile and powerful algorithm to 
learn expected rewards based on the Rescorla-Wagner 
reinforcement learning rule and extendible to complex 
multiple stimuli-reward situations ( Montague  et al ., 
1996 ;  McClure  et al ., 2003 ;  O’Doherty  et al ., 2003 ). 
The prediction error equals the difference between 
actual or updated and (previously) expected (sums of 
discounted) rewards. A number of chapters in this 
volume provide details, so we shall not elaborate here 
(see Chapters 21, 22, 24, and 26). 

   One crucial element is missing in this account of 
(expected) reward learning, namely, risk. Specifically, 
to learn at the optimal rate, it is important that the 
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   Random utility models form a class of statistical 
models widely used to describe actually observed 
choice behavior. Following standard revealed-
preference principles, individual choices are assumed 
to maximize some underlying utility. The latter is, 
however, imperfectly observable. Utility, therefore, 
is split into a modeled part (a function of observable 
variables, common to all individuals up to a param-
eter vector) and an orthogonal, random error term 
(often referred to as  “ unobserved heterogeneity ” ). 

   Specifi cally, the utility for alternative  a  is 
written as 

U Va a a� � ε ,        

   where  V a   is the modeled part of the utility, and   ε  a   
the error term, capturing the uncertainty over the 
true  U a  . The probability of observing alternative  a  
being chosen in the choice set  C  is therefore 

Pr Pr( max )C a
c C

cY a U U( )� � �
∈

       

   The uncertainty   ε  a   is frequently modeled as a 
normal or logistic distribution, yielding probit or 
logit models, respectively. 
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   BOX 23.2     

  R A N D O M - U T I L I T Y  M O D E L S    
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decision-maker assesses the risk of making a predic-
tion error. The reasoning is simple. If expecting to 
make large prediction errors (i.e., if the risk is expected 
to be high), then one should not change one’s predic-
tion much based on a large actual prediction error. In 
other words, the learning rate should be low. (A few 
neuroscientists have started to incorporate risk in rein-
forcement learning, referring to the (prediction) risk as 
 expected uncertainty  ( Yu and Dayan, 2003 ).For a rigor-
ous treatment, see  Preuschoff and Bossaerts, 2007 .) 

   There are (at least) two ways in which risk assess-
ment could affect learning. One is directly through 
the learning rate; another is through adjustment of 
the prediction error. Indeed, a simple scaling of pre-
diction errors by their expected size accomplishes the 
same (see  Preuschoff and Bossaerts, 2007 , for details). 
Evidence for such a type of  “ adaptive encoding ”  was 
recently discovered in firing of dopamine neurons in 
the monkey brain.  Figure 23.4    shows the average fir-
ing rates and single-trial firings of dopamine neurons 
for three types of trials, in the order (top to bottom) 
of increasing expected size of the prediction error. 
When reward occurs, the prediction errors are insensi-
tive to the level of anticipated risk, demonstrating that 
they are somehow  “ scaled. ”  This finding is further 
explored in Chapter 21. 

   (Expected) reward learning is complex. Not only 
will it be affected by the expected size of the predic-
tion error (risk); other considerations also play a role, 
such as how much an optimal predictor might co-vary 
with the prediction error. For instance, in situations 
where the environment changes rapidly, past predic-
tion errors become obsolete fast, and hence predic-
tion should rely more on recent prediction errors. 
Effectively, this means that the learning rate should 
increase. This intuition has a rigorous underpinning 
(see  Preuschoff and Bossaerts, 2007 ).  Behrens  et al . 
(2007)  recently provided evidence that humans do 
adjust their learning rate to the degree of stability. 

   In addition to being necessary for optimal learning, 
risk-encoding could also play a role in the decision-
maker’s risk  attitude . Risk-encoding is actually  
presumed  to occur in risk-sensitive organisms. How else 
would their behavior be affected by risk? Not surpris-
ingly, the evidence of risk-encoding in the human and 
non-human primate brain is overwhelming. Regions 
where activation appears to be sensitive to risk 
include the insula, anterior cingulated cortex (ACC) 
and inferior frontal gyrus (IFG) (see, for example, 
 Critchley  et al ., 2001 ;  Paulus  et al ., 2003 ;  Huettel  et al ., 
2005 ). Some of these regions, such as insula, seem to 
encode risk  exclusively  (       Preuschoff  et al ., 2006, 2008 ). 

   Moreover, in simple monetary gambles, activation 
seems to reflect  variance  (or its square root, standard 
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deviation), i.e., the expectation of the squared prediction 
errors (       Preuschoff  et al . 2006, 2008 ). As such, the encod-
ing provides a key parameter with which to compute 
the utility of a risk-averse agent. Indeed, a Taylor series 
expansion of an expected utility index demonstrates 
that risk is to be measured in terms of reward vari-
ance; all other aspects of risk (skewness, kurtosis, etc.) 
are secondary. For discussion of applications to finance, 
see  Bali  et al . (2008) , for neuroimaging data on possible 
encoding of skewness and kurtosis, see  Hsu (2006) . 

   As with expected reward signals in the dopamin-
ergic system, activation correlating with risk in some 
regions actually reflects risk-prediction  errors  – i.e., the 
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 FIGURE 23.4          Single-trial firing rates and corresponding his-
togram for a single dopamine neuron in ventral tegmental area (a) 
and histogram of group firing rates (b) in imperative trials where a 
monkey is presented with stimuli that indicate the size of a random 
(50% chance) juice reward; results are shown only for rewarded tri-
als. Firing at stimulus onset reflects the size of the expected juice 
reward. Firing at reward onset reflects the prediction error (positive, 
since only rewarded trials are retained for the analysis). The firing 
at reward delivery does not, however, reflect the size of the predic-
tion error, which increases with the size of the reward (e.g., 0.50       ml 
against an expectation of 0.25       ml in the third case, or 0.05       ml against 
an expectation of 0.025       ml in the first case). Firing at reward deliv-
ery reflects a scaled prediction error: the prediction error divided by 
the anticipated size of the prediction error (prediction risk).   From 
 Tobler  et al.  (2005) .    
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difference between the square-size of the prediction 
error and its expectation (the variance). Specifically, 
phasic activation in anterior insula exhibits strong cor-
relation with risk-prediction errors ( Preuschoff  et al ., 
2008 ). Little is known, however, about the precise 
neurobiological architecture and algorithms of risk 
learning. We only know that risk prediction and risk-
prediction errors are encoded. 

   One may object that a risk-prediction error can be 
recorded in the paradigm of  Preuschoff  et al . (2008) . 
Indeed, the risk-prediction error in a trial is irrelevant 
to making better forecasts in future trials, as the trials 
are independent. That is, there is no relevant learn-
ing. There are three reactions to this objection. First, 
this finding is not unique to risk-prediction errors. 
Reward-prediction errors can similarly be recorded in 
situations where learning is irrelevant because trials 
are independent (see, for example,  Fiorillo  et al ., 2003 ; 
 Preuschoff  et al ., 2006 ). Second, encoding of prediction 
errors is relevant for cases where learning unexpectedly 
 does  matter. For example, if an experimenter tells a sub-
ject that trials are independent (as in  Preuschoff  et al ., 
2006 ) yet is lying (unlike in  Preuschoff  et al ., 2006 ), then 
if the brain has prediction errors at hand it can man-
age the situation better. (In fact, this is one of the prime 
reasons why deception is frowned upon in economic 
experiments, but it would not be a compelling one if 
people always blindly believed the experiment.) In this 
sense, the emergence of prediction errors in situations 
where learning is irrelevant in principle is equivalent to 
the presence of valuation signals in imperative trials. 

   Third, prediction-error encoding does sometimes 
have behavioral implications. Choices across inde-
pendent trials sometimes reflect belief updating as if 
outcomes are actually dependent. Such belief updat-
ing presumes encoding of prediction errors. A classi-
cal example is underweighting of small probability 
events in experiments with trial-by-trial reward feed-
back (see  Hertwig  et al ., 2004 ). 

   Finally, risk-encoding may play a role in learning, in 
addition to guiding choice. For learning to be effective, 
however, risk-encoding should be  objective . In particu-
lar, risk aversion or risk tolerance should not affect 
risk perception. Imagine that more risk-averse agents 
overestimate risk. Since perceived risk decreases the 
learning rate, this would mean that risk-averse agents 
learned more slowly. That would give them a handi-
cap in competition with agents who are more risk tol-
erant. To date, it is not known to what extent learning 
is affected by risk aversion, or to what extent the brain 
encodes a dual-risk signal – one subjective, to guide 
choice, and one objective, to drive learning. 

   The picture that emerges from the extant findings is 
one where the brain values risky gambles by evaluating 
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their expected reward and risk separately ( Figure 23.5   ). 
The separate evaluations are then merged to gener-
ate a total valuation signal, detectable in (for example) 
prefrontal cortex (PFC).  Figure 23.6    shows how PFC 
activation increases with expected reward for all sub-
jects, but decreases with risk for risk-averse subjects 
and increases with risk for risk-seeking subjects. 

   To date, it is not known how the various signals 
related to risk and expected reward in disparate brain 
regions are integrated to deliver the aforementioned 
total value signal in PFC. A recent study, however, 
used canonical correlations analysis to extract a value 
index from joint activation of insula, ventral striatum, 
and putamen, exploiting the recorded correlation in 
baseline activations across these regions. The resulting 
 “ neuronal ”  utility index was found to correlate signif-
icantly with activation in the very part of PFC identi-
fied in  Tobler  et al . (2007 ; see also  Bruguier  et al ., 2008) .  

    EXTENDING THE REWARD–RISK 
COMPUTATIONAL MODEL TO 

AMBIGUITY 

   So far, we have considered only pure risk – i.e., sit-
uations where probabilities are known. The evidence 
points towards a computational model whereby 
the brain computes value by separately encoding 
expected reward and risk, and combining the results. 
Such a computational model is known to approxi-
mate well to many types of utility functions ( Bali  et al ., 
2008 ), including prospect theory ( Agren, 2006 ). 

   In many situations in real life, probabilities are 
unknown or only partially known. This is called 
 ambiguity  in decision theory ( Ellsberg, 1961 ). A styl-
ized fact in decision experiments is that many indi-
viduals are ambiguity averse ( Camerer and Weber, 
1992 ). A number of models exist that account for 
decisions under ambiguity. Perhaps the best 
known are the maxmin utility model of  Gilboa and 
Schmeidler (1989) , and its extension, the  α -maxmin 
utility model ( Ghirardato  et al ., 2004 ). In the latter, 
the worst- and best-case scenarios provide anchor 
points for beliefs. In one extreme case ( α       �      1), beliefs 
are entirely determined by the worst-case scenario, 
and the  α -maxmin utility model coincides with 
that of  Gilboa and Schmeidler (1989) . In the other 
extreme case ( α       �      0), beliefs are solely based on the 
best-case scenario. For  α       �      0.5, the decision-maker is 
ambiguity averse; for  α       �      0.5, she is ambiguity seek-
ing; at  α       �      0.5, she is ambiguity neutral – i.e. her 
beliefs are the average of the worst-case and best-case 
scenarios. 
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 FIGURE 23.5          (Immediate) activation in striatal areas (a) increases with the probability of a fixed reward (b) in the human brain in gam-
bles where the probability of reward fluctuates between 0 and 1. As such, activation correlates with expected reward. (Delayed) activations 
in sub-cortical areas and insula (c) change quadratically with probability of reward (d), with a peak at 50% chance of winning, and minima at 
certainty of loss or gain. As such, activation correlates with risk, measured as reward variance. Vertical line segments indicate 95% confidence 
intervals.   From  Preuschoff  et al . (2006) , and unpublished data.          
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   For instance, the decision maker may bet on the 
drawing of red, green, and blue balls from an urn. 
She earns $1 if the ball drawn is red or green; if the 
ball is blue, she loses $1. One-third of the balls are 
red. The number of green and blue balls is unknown, 
but the decision-maker knows that at least one-sixth 
of the balls are green, and one-twelfth are blue. 
A decision-maker with  α       �      0 will only consider the 
worst-case scenario, the minimum probability of win-
ning,  p min        �      1/2 ( � (1/3)      �      (1/6)); this will fix her 
beliefs. When  α       �      1, the maximum probability,  p max   ,  
determines her beliefs;  p max        �      11/12 ( � 1      �      1/12). 
In general, the belief that the decision-maker wins 
equals  α   p min        �      (1      �       α )  p max .  Without loss of gener-
ality, we can set the utility of winning $1 equal to 1 
and the utility of losing $1 equal to 0. Hence, the 
general expression of the expected utility of the deci-
sion maker is  α   p min        �      (1       �        α )  p max  . See  Box 23.3    for 
further discussion of the  α -maxmin model. 

   As with expected utility under pure risk, the 
 α -maxmin utility model is equivalent (this time, it is 
 not  an approximation) to one where utility is com-
puted based on a tradeoff between mean and risk. In 
this case, the mean is just the average of the minimum 
and maximum probabilities: 

 
p p pmin max� �

1
2

1
2

.
   

   The risk  c , in contrast, is determined by the amount 
ambiguity:   

 c p pmax min� � .    

 p0570  p0570 

 p0580  p0580 

   Utility, then, is some weighted average of  β  and  c :   

 U p c� �γ γ1 2 .    

   Simple algebra reveals that:   

 
α γ γ� �

1
2 1 2.

     

 
1

1
2 1 2� � �α γ γ .

   

   So   γ   1       �      1 and   γ   2       �      1/2      �        α  .   
   Therefore, under both pure risk and ambiguity, 

there exists an equivalent representation of utilities in 
terms of a model that trades off mean against risk. As 
such, it can be conjectured that brain regions involved 
in encoding mean and risk in situations of pure risk 
(striatum, anterior cingulate cortex, insula, inferior 
frontal gyrus,  … ) are also involved in encoding these 
parameters when there is ambiguity. As the weights 
on mean and risk need not be the same, it is to be 
expected that the intensity of the brain activations dif-
fers depending on the situation. 

   This is supported by the findings of  Hsu  et al . (2005)  
and consistent with those of  Huettel  et al . (2006) . The 
former found the striatum to be differentially acti-
vated under risk relative to ambiguity, whereas the 
amygdala and lateral orbitofrontal cortex showed the 
reverse. Furthermore, they provide both neuroimag-
ing and brain-lesion data support for the idea that a 
common neural mechanism underlies both risk and 
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 FIGURE 23.6          Activation in medial prefrontal cortex correlates with expected utility of a gamble in imperative trials (a). This activation 
increases in expected reward both for risk-averse (b) and risk-seeking (c) subjects; risk attitudes are measured through revealed preference in 
free-choice trials. The same activation decreases with risk of the gamble (measured as reward variance) for risk-averse subjects (d). It increases 
with risk for risk-seeking subjects (e).   Adapted from  Tobler  et al . (2007) .    
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ambiguity. First, the striatal activity was significantly 
correlated with the expected value of subjects ’  choices 
in both the risk and ambiguity conditions ( Hsu  et al ., 
2005 ; see also  Figure 23.7   ). Even stronger support is 
provided by the fact that patients with lesions to the 
lateral orbitofrontal cortex, as opposed to a compari-
son group of temporal-lobe lesion patients, were both 
risk  and  ambiguity neutral. Therefore, the difference 
between risk and ambiguity at the level of the reward 
system appears to be one of degree. 

   Closer inspection reveals that the mean-risk 
model is actually more general than the  α -maxmin 
model; the latter imposes restrictions on the weights 
and on the mean-risk model. In fact, the mean-risk 
mode could be derived as a hierarchical Bayesian 
updating model, whereby the decision-maker is 
first agnostic about the true probability of winning 
(in the example above it is uniform between 1/3 and 
1), but then uses the midpoint (the average between 
minimum and maximum probabilities) as a cue to 
where the true probability lies. Specifically, the mid-
point is assumed to be drawn from a uniform distri-
bution centered on the true probability and with a 
range equal to the difference between the maximum 
and minimum probabilities. The posterior mean and 
variance of the true probability are given by  p     and  c , 
respectively. 

   The connection with updating and learning is 
important and illuminating in light of the findings of 
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amygdala activation in  Hsu  et al . (2005) . Significant 
activation of amygdala is rare or non-existent under 
pure risk. When contrasting choices involving ambi-
guity against those involving only pure risk, however, 
amygdala activation is strong. This could be consistent 
with activation of amygdale in, for example, novelty 
tasks ( Rutishauser  et al ., 2006 ), and suggests that the 
amygdala signals a need for learning of the unknown 
probabilities. Further research is needed to discover 
the true role of amygdala under ambiguity. 

   More generally, further experiments are needed 
to verify the extent to which valuation in the con-
text of ambiguity is based on a computational model 
that trades off mean against risk. These experiments 
should extend previous studies pairing ambiguous 
with pure-risk (or zero-risk) gambles ( Hsu  et al ., 2005 ; 
 Huettel  et al ., 2006 ), and focus on choice between gam-
bles with differing levels of ambiguity.  

    EXTENDING THE REWARD–RISK 
COMPUTATIONAL MODEL TO 

DECISIONS INVOLVING EQUITY AND 
EFFICIENCY 

   The separation between expected reward and vari-
ance we observe in neural valuation of risky gambles 
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   A number of models exist that account for decisions 
under ambiguity. Perhaps the best known is the maxmin 
utility (MEU) model ( Gilboa and Schmeidler, 1989 ), and 
its extension the  α -maxmin ( α -MEU) model ( Ghirardato 
 et al ., 2004 ). 

   The former replaces the classic independence axiom 
with a weakened version (certainty-independence), 
thereby yielding the utility representation 

  
MEU f u f dP

P C
S

( ) ( ) ,� min
∈ ∫

  

   where  C  is the set of probability measures on the set of 
possible states  S . Under MEU, the decision maker con-
siders only the worst-case scenario. 

   The  α -maxmin model generalizes MEU by allowing 
the decision-maker to consider a mixture of the worst 
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   BOX 23.3     

  M O D E L S  O F  D E C I S I O N - M A K I N G  U N D E R  A M B I G U I T Y    

 b0030  b0030 

and best-case scenarios, which provide anchor points 
for beliefs. That is, 

α α

α

MEU f u f dP

u f dP

P C
S

P C
S

( ) ( )

( ) ( ) .

� �

�

min

max

∈

∈

∫

∫1
       

   When  α       �      1, beliefs are entirely determined by the 
worst-case scenario, and the  α MEU utility model coin-
cides with MEU. In the other extreme case ( α       �      0), 
beliefs are solely based on the best-case scenario. For 
 α       �      0.5, the decision-maker is ambiguity averse; for 
 α       �      0.5, she is ambiguity loving; at  α       �      0.5, she is ambi-
guity neutral; her beliefs are the average of the worst-
case and best-case scenarios. 
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may also carry over to choices that require tradeoffs 
between efficiency and inequity. The latter is a typical 
problem in studies of distributive justice. A deep 
theoretical connection exists between decision-
making under uncertainty and the measurement 
of inequity ( Atkinson, 1970 ; see also  Box 23.4   ). The 
central concern in both is the comparison of fre-
quency distributions  f ( y ). In decisions under uncer-
tainty,  f ( y ) denotes the probability of state  y  occurring, 
whereas in the case of inequity,  f ( y ) is the frequency 
distribution on income or other variables of interest 
for person  y . 

   In experiments involving efficiency and inequity 
tradeoffs in a distributive justice task,  Hsu  et al . (2008)  
found a separation of regions encoding efficiency and 
inequity in much the same way as that for expected 
reward and variance. Specifically, efficiency is 
encoded in striatal regions including the caudate and 
putamen, whereas inequity is encoded in the insular 
cortex. This utilization of similar neural mechanisms 
for what on the surface are very different decisions 
provides a strong indication that these are very gen-
eral mechanisms for the computation of decisions in a 
variety of different situations.  
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   Central in the connection between measurement 
of inequity and decision-making under risk is the 
idea of welfare. This is uncontroversial in the lat-
ter, and is traditionally meant to denote individual 
welfare, or utility. As pointed out in  Dalton (1920) , 
however, judgments of social welfare underlie the 
conception of any inequity measure. If we assume 
that the social welfare function is additively sepa-
rable and symmetric in income, we arrive at the 
following: 

W U y f y dy
y

� ( ) ( ) .
0∫        

   This form is immediately familiar in its 
resemblance to the standard expected utility 
representation. In fact, many of the concepts in deci-
sion-making under risk, e.g., second-order stochastic 
dominance, mean-preserving spread, have formally 
identical counterparts in measurements of inequity, 
e.g., Lorenz dominance, principle of transfer, respec-
tively ( Atkinson, 1970 ). The assumptions of addi-
tive separability and symmetry, interestingly, can in 
addition be derived axiomatically via an appeal to 
decision-making under risk ( Harsanyi, 1978 ). 
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